Virginia Web Scraping

Virginia Data Scraping, Web Scraping Tennessee, Data Extraction Tennessee, Scraping Web Data, Website Data Scraping, Email Scraping Tennessee, Email Database, Data Scraping Services, Scraping Contact Information, Data Scrubbing

Thursday, 23 February 2017

Why is web scraping worldwide used

Why is web scraping worldwide used

Nowadays a huge amount of information is placed online, and alongside with it, appeared new techniques and software that analyse and extract it. Such a software technique is web scraping, which simulates human exploration of the World Wide Web. The software that does this either implements the low-level Hypertext Transfer Protocol or embeds a web browser. Its main goal is to automatically collect information from the World Wide Web. This process requires semantic understanding, text processing, artificial intelligence and a close interaction between human and computer. This technique is widely used by business owners that want to find new ways of increasing their profit and using the relevant marketing strategies.

Web scraping is important for successful businesses because it provides three categories of information: web content, web usage and web structure. This means that it extracts information from web pages, server logs, links between pages and people, and browser activity data. This helps companies having access to the needed data, because web scrapping services transform unstructured data into structured data. The direct result of this process is seen on the outcome of the businesses. Companies set up easy web scraping programs that have the purpose to provide reliable and efficient information for its users. These services make this process much easier. Because companies are the ones that focused their energy to implement such a program, they benefit from multiple advantages. The companies that want to have a close relation with their clients, have the opportunity to send notifications to their customers that include promotions, price changes, or the launching of a new product. When using web scraping, companies have the opportunity of comparing their product prices with the ones of the similar ones.

Web data extraction proves to be very useful when meteorologists want to monitor weather changes. The companies that use this type of information extraction have also other advantages alongside with the ones listed above. This process allows them to transform page contents according to their needs, and they can be sure that the data collected is reliable and accurate. They can retrieve the data from their websites, because this process can be used with both dynamic and static pages. Web data extraction is very valuable because it is able to recognize semantic annotation. The companies that need complicated data can get it by using web scraping, and this leads to minimizing costs and more sales. Companies choose to use marketing intelligence because it helps them increase their profit through good business practices. The companies that use these services are the ones that practice online shipping, because they want to provide their clients information about services, terms of services and products. Other type of businesses that uses this service are stores, which supply their products online. This service helps them provide information about their services and products, but if it is a more complex store, then it helps them offer their clients details about their procedures and head offices. Web scraping proves to be a successful way of achieving success in many domains.


Tuesday, 14 February 2017

Benefits of Predictive Analytics and Data Mining Services

Benefits of Predictive Analytics and Data Mining Services

Predictive Analytics is the process of dealing with variety of data and apply various mathematical formulas to discover the best decision for a given situation. Predictive analytics gives your company a competitive edge and can be used to improve ROI substantially. It is the decision science that removes guesswork out of the decision-making process and applies proven scientific guidelines to find right solution in the shortest time possible.

Predictive analytics can be helpful in answering questions like:

-  Who are most likely to respond to your offer?
-  Who are most likely to ignore?
-  Who are most likely to discontinue your service?
-  How much a consumer will spend on your product?
-  Which transaction is a fraud?
-  Which insurance claim is a fraudulent?
-  What resource should I dedicate at a given time?

Benefits of Data mining include:

-  Better understanding of customer behavior propels better decision
-  Profitable customers can be spotted fast and served accordingly
-  Generate more business by reaching hidden markets
-  Target your Marketing message more effectively
-  Helps in minimizing risk and improves ROI.
-  Improve profitability by detecting abnormal patterns in sales, claims, transactions etc
-  Improved customer service and confidence
-  Significant reduction in Direct Marketing expenses

Basic steps of Predictive Analytics are as follows:

-  Spot the business problem or goal
-  Explore various data sources such as transaction history, user demography, catalog details, etc)
-  Extract different data patterns from the above data
-  Build a sample model based on data & problem
-  Classify data, find valuable factors, generate new variables
-  Construct a Predictive model using sample
-  Validate and Deploy this Model

Standard techniques used for it are:

-  Decision Tree
-  Multi-purpose Scaling
-  Linear Regressions
-  Logistic Regressions
-  Factor Analytics
-  Genetic Algorithms
-  Cluster Analytics
-  Product Association


Wednesday, 8 February 2017

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.


Thursday, 2 February 2017

Facts on Data Mining

Facts on Data Mining

Data mining is the process of examining a data set to extract certain patterns. Companies use this process to determine the outcome of their existing goals. They summarize this information into useful methods to create revenue and/or cut costs. When search engines are accessed, they begin to build lists of links from the first page it accesses. It continues this process throughout the site until it reaches the root page. This data not only includes text, but also numbers and facts.

Data mining focuses on consumers in relation to both "internal" (price, product positioning), and "external" (competition, demographics) factors which help determine consumer price, customer satisfaction, and corporate profits. It also provides a link between separate transactions and analytical systems. Four types of relationships are sought with data mining:

o Classes - information used to increase traffic
o Clusters - grouped to determine consumer preferences or logical relationships
o Associations - used to group products normally bought together (i.e., bacon, eggs; milk, bread)
o Patterns - used to anticipate behavior trends

This process provides numerous benefits to businesses, governments, society, and especially individuals as a whole. It starts with a cleaning process which removes errors and ensures consistency. Algorithms are then used to "mine" the data to establish patterns.