Virginia Web Scraping

Virginia Data Scraping, Web Scraping Tennessee, Data Extraction Tennessee, Scraping Web Data, Website Data Scraping, Email Scraping Tennessee, Email Database, Data Scraping Services, Scraping Contact Information, Data Scrubbing

Tuesday, 30 June 2015

Data Scraping - About Hand Scraped Flooring

Hand scraped hardwood flooring is one of the best floors that you can install in your house.

Advantages of Hand Scraped Hardwood Flooring

The product comes with a number of advantages which include:

Antique and modern technology: The floor professionally brings out the best elements of both antique and modern technology. The modern elements are in the quality of the product.

Unique patterns: Who doesn't want to be unique? These floors allow you to create your unique design. If you are going to use a machine, all you need to do is to set the machine such that it creates the pattern that you want. If the floor will be scraped by a craftsman, you should ask the craftsman to craft your desired pattern.

Character: The different depths in the floor provide you with character and color that you can't find in other types of floors. As the sun changes its angle during the day, the nooks and valleys on the board lit differently thus providing your board with an endless rich appearance.

Durability: Experts have been able to show that hand-scraped hardwood retains its look for a long time. If your kid or pet hits the floor, the dent just blends with the rest of the character making it hard for people to tell that there is a dent.

Making the floors shine again

Although, the scraped floors are designed to look worn and aged, they are made from modern wood which needs to be taken care of in order to retain its original look.

To make the floors shine again you need to remove all the dust and dirt that might be causing the wood to look dull.

After doing this you should mix 1 gallon of warm water with ½ teaspoon of dishwashing detergent and use it to clean the surface of the floor. The aim of doing this is to remove any stains that might be on the floor. When you complete doing this you should dampen the piece of cloth with club soda and then use another piece of cloth to buff the wood until it shines.

Conclusion

This is what you need to know about hand scraped hardwood flooring. When cleaning the floors you should avoid using oil based soaps as they dull the surface making your efforts worthless.

If the above method of shining the floor doesn't work, you should mix one part white vinegar and one part of cooking oil and use it to clean the floor.

Source: http://ezinearticles.com/?About-Hand-Scraped-Flooring&id=8990255

Tuesday, 23 June 2015

Rvest: easy web scraping with R

Rvest is new package that makes it easy to scrape (or harvest) data from html web pages, by libraries like beautiful soup. It is designed to work with magrittr so that you can express complex operations as elegant pipelines composed of simple, easily understood pieces. Install it with:

install.packages("rvest")

rvest in action

To see rvest in action, imagine we’d like to scrape some information about The Lego Movie from IMDB. We start by downloading and parsing the file with html():

library(rvest)

lego_movie <- html("http://www.imdb.com/title/tt1490017/")

To extract the rating, we start with selectorgadget to figure out which css selector matches the data we want: strong span. (If you haven’t heard of selectorgadget, make sure to read vignette("selectorgadget") – it’s the easiest way to determine which selector extracts the data that you’re interested in.) We use html_node() to find the first node that matches that selector, extract its contents with html_text(), and convert it to numeric with as.numeric():

lego_movie %>%

  html_node("strong span") %>%
  html_text() %>%
  as.numeric()

#> [1] 7.9

We use a similar process to extract the cast, using html_nodes() to find all nodes that match the selector:

lego_movie %>%

  html_nodes("#titleCast .itemprop span") %>%
  html_text()

#>  [1] "Will Arnett"     "Elizabeth Banks" "Craig Berry"   

#>  [4] "Alison Brie"     "David Burrows"   "Anthony Daniels"

#>  [7] "Charlie Day"     "Amanda Farinos"  "Keith Ferguson"

#> [10] "Will Ferrell"    "Will Forte"      "Dave Franco"   

#> [13] "Morgan Freeman"  "Todd Hansen"     "Jonah Hill"

The titles and authors of recent message board postings are stored in a the third table on the page. We can use html_node() and [[ to find it, then coerce it to a data frame with html_table():

lego_movie %>%

  html_nodes("table") %>%
  .[[3]] %>%
  html_table()

#>                                              X 1            NA

#> 1 this movie is very very deep and philosophical   mrdoctor524

#> 2 This got an 8.0 and Wizard of Oz got an 8.1...  marr-justinm

#> 3                         Discouraging Building?       Laestig

#> 4                              LEGO - the plural      neil-476

#> 5                                 Academy Awards   browncoatjw

#> 6                    what was the funniest part? actionjacksin

Other important functions

    If you prefer, you can use xpath selectors instead of css: html_nodes(doc, xpath = "//table//td")).

    Extract the tag names with html_tag(), text with html_text(), a single attribute with html_attr() or all attributes with html_attrs().

    Detect and repair text encoding problems with guess_encoding() and repair_encoding().
    Navigate around a website as if you’re in a browser with html_session(), jump_to(), follow_link(), back(), and forward(). Extract, modify and submit forms with html_form(), set_values() and submit_form(). (This is still a work in progress, so I’d love your feedback.)

To see these functions in action, check out package demos with demo(package = "rvest").

Source: http://www.r-bloggers.com/rvest-easy-web-scraping-with-r/

Thursday, 18 June 2015

Web Scraping : Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Saturday, 6 June 2015

Getting Data from the Web Scraping

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

•    Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

•    Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

•    Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.

What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.

Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.

What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

•    Badly formatted HTML code with little or no structural information e.g. older government websites.

•    Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

•    Session-based systems that use browser cookies to keep track of what the user has been doing.

•    A lack of complete item listings and possibilities for wildcard search.

•    Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.

Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.

How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.

The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

Figure 57. The International Atomic Energy Agency’s (IAEA) portal (news.iaea.org)

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

# Look for all rows in the table

# Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

import scraperwiki

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

doc_text = scraperwiki.scrape(url)

doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

•    Can you find the address for the link in each event’s title?

•    Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

•    ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

•    The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html

Sunday, 31 May 2015

Web Scraping Services - A trending technique in data science!!!

Web scraping as a market segment is trending to be an emerging technique in data science to become an integral part of many businesses – sometimes whole companies are formed based on web scraping. Web scraping and extraction of relevant data gives businesses an insight into market trends, competition, potential customers, business performance etc.  Now question is that “what is actually web scraping and where is it used???” Let us explore web scraping, web data extraction, web mining/data mining or screen scraping in details.

What is Web Scraping?

Web Data Scraping is a great technique of extracting unstructured data from the websites and transforming that data into structured data that can be stored and analyzed in a database. Web Scraping is also known as web data extraction, web data scraping, web harvesting or screen scraping.

What you can see on the web that can be extracted. Extracting targeted information from websites assists you to take effective decisions in your business.

Web scraping is a form of data mining. The overall goal of the web scraping process is to extract information from a websites and transform it into an understandable structure like spreadsheets, database or csv. Data like item pricing, stock pricing, different reports, market pricing, product details, business leads can be gathered via web scraping efforts.

There are countless uses and potential scenarios, either business oriented or non-profit. Public institutions, companies and organizations, entrepreneurs, professionals etc. generate an enormous amount of information/data every day.

Uses of Web Scraping:

The following are some of the uses of web scraping:

•    Collect data from real estate listing

•    Collecting retailer sites data on daily basis

•    Extracting offers and discounts from a website.

•    Scraping job posting.

•    Price monitoring with competitors.

•    Gathering leads from online business directories – directory scraping

•    Keywords research

•    Gathering targeted emails for email marketing – email scraping

•    And many more.

There are various techniques used for data gathering as listed below:

•    Human copy-and-paste – takes lot of time to finish when data is huge

•    Programming the Custom Web Scraper as per the needs.

•    Using Web Scraping Softwares available in market.

Are you in search of web data scraping expert or specialist. Then you are at right place. We are the team of web scraping experts who could easily extract data from website and further structure the unstructured useful data to uncover patterns, and help businesses for decision making that helps in increasing sales, cover a wide customer base and ultimately it leads to business towards growth and success.

We have got expertise in all the web scraping techniques, scraping data from ajax enabled complex websites, bypassing CAPTCHAs, forming anonymous http request etc in providing web scraping services.

The web scraping is legal since the data is publicly and freely available on the Web. Smart WebTech can probably help you to achieve your scraping-based project goals. We would be more than happy to hear from you.

Source: http://webdata-scraping.com/web-scraping-trending-technique-in-data-science/

Thursday, 28 May 2015

Endorsing web scraping

With more than 200 projects delivered, we stand firmly for new challenges every day. We have served above 60 clients and have won 86% of repeat business, as our main core is customer delight. Successive Softwares was approached by a client having a very exclusive set of requirements. For their project they required customised data mining, in real time to offer profitable information to their customers. Requirement stated scrapping of stock exchange data in real time so that end users can be eased in their marketing decisions. This posed as an ambitious task for us because it required processing of huge amount of data on a routine basis. We welcomed it as an event to evolve and do something aside of classic web application development.

We started with mock-ups, pursuing our very first step of IMPART Framework (Innovative Mock-up based Prototypes Analyzed to develop Reengineered Technology). Our team of experts thought of all the potential requirements with a flow and materialized it flawlessly into our mock up. It was a strenuous tasks but our excitement to do something which others still do not think of, filled our team with confidence and energy and things began to roll out perfectly. We presented our mock-up and statistics to the client as per our expectation client choose us, impressed with the efforts.

We started gathering requirements from client side and started to formulate design about the flow. The project required real time monitoring of stock exchange together with Prices, Market Turnover and then implement them into graphs. The front end part was an easy deal, we were already adept in playing with data the way required. The intractable task was to get the data. We researched and found that it can be achieved either with API or with Web Scarping and we moved with latter because of the limitations in API.

Web scraping is a compelling technique to get the required information straight out of the web page. Lack of documentation and not much forbearance forced us to make a slow start, but we kept all the requirements clear and new that we headed in the right direction.  We divided the scraping process into bits of different but related tasks. Firstly we needed to find the data which has to be captured, some of the problems faced were pagination and use of AJAX but with examination of endpoints in URL and the requests made when data is drawn, we surmounted these problems easily.

After targeting our data we focused on HTML parser which could extract data form all the targets. Using PHP we developed a parser extracting all the information and saving them in Database in a structured way.  After the required data present at our end we easily manipulated it into tables and charts and we used HIGHSTOCK for that. Entire Client side was developed in PHP with Zend frame work and we used MySQL 5.7 for server side.

During the whole development cycle our QA team insured we were delivering a quality product following all standards. We kept our client in the loop during the whole process keeping them informed about every step. Clients were also assured as they watched their project starting from scratch which developed into full fledge website. The process followed a strict time line releasing regular builds and implementing new improvements. We stood up to the expectation our client and delivered a product just as they visualized it to be.

Source: http://www.successivesoftwares.com/endorsing-web-scraping/

Monday, 25 May 2015

Screen Scraping with BeautifulSoup and lxml

Please enjoy this — a free Chapter of the Python network programming book that I revised for Apress in 2010!

I completely rewrote this chapter for the book's second edition, to feature two powerful libraries that have appeared since the book first came out. I show how to screen-scrape a real-life web page using both BeautifulSoup and also the powerful lxml library (their web sites are here and here).

I chose this chapter for release because screen scraping is often the first network task that a novice Python programmer tackles. Because this material is oriented towards beginners, it explains the entire process — from fetching web pages, to understanding HTML, to querying for specific elements in the document.

Program listings are available for this chapter in both Python 2 and also in Python 3. Let me know if you have any questions!

Most web sites are designed first and foremost for human eyes. While well-designed sites offer formal APIs by which you can construct Google maps, upload Flickr photos, or browse YouTube videos, many sites offer nothing but HTML pages formatted for humans. If you need a program to be able to fetch its data, then you will need the ability to dive into densely formatted markup and retrieve the information you need—a process known affectionately as screen scraping.

In one's haste to grab information from a web page sitting open in your browser in front of you, it can be easy for even experienced programmers to forget to check whether an API is provided for data that they need. So try to take a few minutes investigating the site in which you are interested to see if some more formal programming interface is offered to their services. Even an RSS feed can sometimes be easier to parse than a list of items on a full web page.

Also be careful to check for a “terms of service” document on each site. YouTube, for example, offers an API and, in return, disallows programs from trying to parse their web pages. Sites usually do this for very important reasons related to performance and usage patterns, so I recommend always obeying the terms of service and simply going elsewhere for your data if they prove too restrictive.

Regardless of whether terms of service exist, always try to be polite when hitting public web sites. Cache pages or data that you will need for several minutes or hours, rather than hitting their site needlessly over and over again. When developing your screen-scraping algorithm, test against a copy of their web page that you save to disk, instead of doing an HTTP round-trip with every test. And always be aware that excessive use can result in your IP being temporarily or permanently blocked from a site if its owners are sensitive to automated sources of load.

Fetching Web Pages

Before you can parse an HTML-formatted web page, you of course have to acquire some. Chapter 9 provides the kind of thorough introduction to the HTTP protocol that can help you figure out how to fetch information even from sites that require passwords or cookies. But, in brief, here are some options for downloading content.

From the Future

If you need a simple way to fetch web pages before scraping them, try Kenneth Reitz's requests library!

The library was not released until after the book was published, but has already taken the Python world by storm. The simplicity and convenience of its API has made it the tool of choice for making web requests from Python.

    You can use urllib2, or the even lower-level httplib, to construct an HTTP request that will return a web page. For each form that has to be filled out, you will have to build a dictionary representing the field names and data values inside; unlike a real web browser, these libraries will give you no help in submitting forms.

    You can to install mechanize and write a program that fills out and submits web forms much as you would do when sitting in front of a web browser. The downside is that, to benefit from this automation, you will need to download the page containing the form HTML before you can then submit it—possibly doubling the number of web requests you perform!

    If you need to download and parse entire web sites, take a look at the Scrapy project, hosted at scrapy.org, which provides a framework for implementing your own web spiders. With the tools it provides, you can write programs that follow links to every page on a web site, tabulating the data you want extracted from each page.

    When web pages wind up being incomplete because they use dynamic JavaScript to load data that you need, you can use the QtWebKit module of the PyQt4 library to load a page, let the JavaScript run, and then save or parse the resulting complete HTML page.

    Finally, if you really need a browser to load the site, both the Selenium and Windmill test platforms provide a way to drive a standard web browser from inside a Python program. You can start the browser up, direct it to the page of interest, fill out and submit forms, do whatever else is necessary to bring up the data you need, and then pull the resulting information directly from the DOM elements that hold them.

These last two options both require third-party components or Python modules that are built against large libraries, and so we will not cover them here, in favor of techniques that require only pure Python.

For our examples in this chapter, we will use the site of the United States National Weather Service, which lives at www.weather.gov.

Among the better features of the United States government is its having long ago decreed that all publications produced by their agencies are public domain. This means, happily, that I can pull all sorts of data from their web site and not worry about the fact that copies of the data are working their way into this book.

Of course, web sites change, so the online source code for this chapter includes the downloaded web page on which the scripts in this chapter are designed to work. That way, even if their site undergoes a major redesign, you will still be able to try out the code examples in the future. And, anyway—as I recommended previously—you should be kind to web sites by always developing your scraping code against a downloaded copy of a web page to help reduce their load.

Downloading Pages Through Form Submission

The task of grabbing information from a web site usually starts by reading it carefully with a web browser and finding a route to the information you need. Figure 10–1 shows the site of the National Weather Service; for our first example, we will write a program that takes a city and state as arguments and prints out the current conditions, temperature, and humidity. If you will explore the site a bit, you will find that city-specific forecasts can be visited by typing the city name into the small “Local forecast” form in the left margin.

Figure 10–1. The National Weather Service web site

(click to enlarge)

When using the urllib2 module from the Standard Library, you will have to read the web page HTML manually to find the form. You can use the View Source command in your browser, search for the words “Local forecast,” and find the following form in the middle of the sea of HTML:

<form method="post" action="http://forecast.weather.gov/zipcity.php" ...>

  ...

  <input type="text" id="zipcity" name="inputstring" size="9"

    value="City, St" onfocus="this.value='';" />

  <input type="submit" name="Go2" value="Go" />

</form>

The only important elements here are the <form> itself and the <input> fields inside; everything else is just decoration intended to help human readers.

This form does a POST to a particular URL with, it appears, just one parameter: an inputstring giving the city name and state. Listing 10–1 shows a simple Python program that uses only the Standard Library to perform this interaction, and saves the result to phoenix.html.

Listing 10–1. Submitting a Form with “urllib2”

#!/usr/bin/env python

# Foundations of Python Network Programming - Chapter 10 - fetch_urllib2.py

# Submitting a form and retrieving a page with urllib2

import urllib, urllib2

data = urllib.urlencode({'inputstring': 'Phoenix, AZ'})

info = urllib2.urlopen('http://forecast.weather.gov/zipcity.php', data)

content = info.read()

open('phoenix.html', 'w').write(content)

On the one hand, urllib2 makes this interaction very convenient; we are able to download a forecast page using only a few lines of code. But, on the other hand, we had to read and understand the form ourselves instead of relying on an actual HTML parser to read it. The approach encouraged by mechanize is quite different: you need only the address of the opening page to get started, and the library itself will take responsibility for exploring the HTML and letting you know what forms are present. Here are the forms that it finds on this particular page:

>>> import mechanize

>>> br = mechanize.Browser()

>>> response = br.open('http://www.weather.gov/')

>>> for form in br.forms():

...     print '%r %r %s' % (form.name, form.attrs.get('id'), form.action)

...     for control in form.controls:

...         print '   ', control.type, control.name, repr(control.value)

None None http://search.usa.gov/search

    hidden v:project 'firstgov'

    text query ''

    radio affiliate ['nws.noaa.gov']

    submit None 'Go'

None None http://forecast.weather.gov/zipcity.php

    text inputstring 'City, St'

    submit Go2 'Go'

'jump' 'jump' http://www.weather.gov/

    select menu ['http://www.weather.gov/alerts-beta/']

    button None None

Here, mechanize has helped us avoid reading any HTML at all. Of course, pages with very obscure form names and fields might make it very difficult to look at a list of forms like this and decide which is the form we see on the page that we want to submit; in those cases, inspecting the HTML ourselves can be helpful, or—if you use Google Chrome, or Firefox with Firebug installed—right-clicking the form and selecting “Inspect Element” to jump right to its element in the document tree.

Once we have determined that we need the zipcity.php form, we can write a program like that shown in Listing 10–2. You can see that at no point does it build a set of form fields manually itself, as was necessary in our previous listing. Instead, it simply loads the front page, sets the one field value that we care about, and then presses the form's submit button. Note that since this HTML form did not specify a name, we had to create our own filter function—the lambda function in the listing—to choose which of the three forms we wanted.

Listing 10–2. Submitting a Form with mechanize

#!/usr/bin/env python

# Foundations of Python Network Programming - Chapter 10 - fetch_mechanize.py

# Submitting a form and retrieving a page with mechanize

import mechanize

br = mechanize.Browser()

br.open('http://www.weather.gov/')

br.select_form(predicate=lambda(form): 'zipcity' in form.action)

br['inputstring'] = 'Phoenix, AZ'

response = br.submit()

content = response.read()


open('phoenix.html', 'w').write(content)

Many mechanize users instead choose to select forms by the order in which they appear in the page—in which case we could have called select_form(nr=1). But I prefer not to rely on the order, since the real identity of a form is inherent in the action that it performs, not its location on a page.

You will see immediately the problem with using mechanize for this kind of simple task: whereas Listing 10–1 was able to fetch the page we wanted with a single HTTP request, Listing 10–2 requires two round-trips to the web site to do the same task. For this reason, I avoid using mechanize for simple form submission. Instead, I keep it in reserve for the task at which it really shines: logging on to web sites like banks, which set cookies when you first arrive at their front page and require those cookies to be present as you log in and browse your accounts. Since these web sessions require a visit to the front page anyway, no extra round-trips are incurred by using mechanize.

The Structure of Web Pages

There is a veritable glut of online guides and published books on the subject of HTML, but a few notes about the format would seem to be appropriate here for users who might be encountering the format for the first time.

The Hypertext Markup Language (HTML) is one of many markup dialects built atop the Standard Generalized Markup Language (SGML), which bequeathed to the world the idea of using thousands of angle brackets to mark up plain text. Inserting bold and italics into a format like HTML is as simple as typing eight angle brackets:

The <b>very</b> strange book <i>Tristram Shandy</i>.

In the terminology of SGML, the strings <b> and </b> are each tags—they are, in fact, an opening and a closing tag—and together they create an element that contains the text very inside it. Elements can contain text as well as other elements, and can define a series of key/value attribute pairs that give more information about the element:

<p content="personal">I am reading <i document="play">Hamlet</i>.</p>

There is a whole subfamily of markup languages based on the simpler Extensible Markup Language (XML), which takes SGML and removes most of its special cases and features to produce documents that can be generated and parsed without knowing their structure ahead of time. The problem with SGML languages in this regard—and HTML is one particular example—is that they expect parsers to know the rules about which elements can be nested inside which other elements, and this leads to constructions like this unordered list <ul>, inside which are several list items <li>:

<ul><li>First<li>Second<li>Third<li>Fourth</ul>

At first this might look like a series of <li> elements that are more and more deeply nested, so that the final word here is four list elements deep. But since HTML in fact says that <li> elements cannot nest, an HTML parser will understand the foregoing snippet to be equivalent to this more explicit XML string:

<ul><li>First</li><li>Second</li><li>Third</li><li>Fourth</li></ul>

And beyond this implicit understanding of HTML that a parser must possess are the twin problems that, first, various browsers over the years have varied wildly in how well they can reconstruct the document structure when given very concise or even deeply broken HTML; and, second, most web page authors judge the quality of their HTML by whether their browser of choice renders it correctly. This has resulted not only in a World Wide Web that is full of sites with invalid and broken HTML markup, but also in the fact that the permissiveness built into browsers has encouraged different flavors of broken HTML among their different user groups.

If HTML is a new concept to you, you can find abundant resources online. Here are a few documents that have been longstanding resources in helping programmers learn the format:

    http://www.w3.org/MarkUp/Guide/

    http://www.w3.org/MarkUp/Guide/Advanced.html

    http://www.w3.org/MarkUp/Guide/Style

The brief Bare Bones Guide, and the long and verbose HTML standard itself, are good resources to have when trying to remember an element name or the name of a particular attribute value:

    http://werbach.com/barebones/barebones.html

    http://www.w3.org/TR/REC-html40/

When building your own web pages, try to install a real HTML validator in your editor, IDE, or build process, or test your web site once it is online by submitting it to

    http://validator.w3.org/

You might also want to consider using the tidy tool, which can also be integrated into an editor or build process:

    http://tidy.sourceforge.net/

We will now turn to that weather forecast for Phoenix, Arizona, that we downloaded earlier using our scripts (note that we will avoid creating extra traffic for the NWS by running our experiments against this local file), and we will learn how to extract actual data from HTML.

Three Axes

Parsing HTML with Python requires three choices:

    The parser you will use to digest the HTML, and try to make sense of its tangle of opening and closing tags

    The API by which your Python program will access the tree of concentric elements that the parser built from its analysis of the HTML page

    What kinds of selectors you will be able to write to jump directly to the part of the page that interests you, instead of having to step into the hierarchy one element at a time

The issue of selectors is a very important one, because a well-written selector can unambiguously identify an HTML element that interests you without your having to touch any of the elements above it in the document tree. This can insulate your program from larger design changes that might be made to a web site; as long as the element you are selecting retains the same ID, name, or whatever other property you select it with, your program will still find it even if after the redesign it is several levels deeper in the document.

I should pause for a second to explain terms like “deeper,” and I think the concept will be clearest if we reconsider the unordered list that was quoted in the previous section. An experienced web developer looking at that list rearranges it in her head, so that this is what it looks like:

<ul>

  <li>First</li>

  <li>Second</li>

  <li>Third</li>

  <li>Fourth</li>

</ul>

Here the <ul> element is said to be a “parent” element of the individual list items, which “wraps” them and which is one level “above” them in the whole document. The <li> elements are “siblings” of one another; each is a “child” of the <ul> element that “contains” them, and they sit “below” their parent in the larger document tree. This kind of spatial thinking winds up being very important for working your way into a document through an API.

In brief, here are your choices along each of the three axes that were just listed:

    The most powerful, flexible, and fastest parser at the moment appears to be the HTMLParser that comes with lxml; the next most powerful is the longtime favorite BeautifulSoup (I see that its author has, in his words, “abandoned” the new 3.1 version because it is weaker when given broken HTML, and recommends using the 3.0 series until he has time to release 3.2); and coming in dead last are the parsing classes included with the Python Standard Library, which no one seems to use for serious screen scraping.

    The best API for manipulating a tree of HTML elements is ElementTree, which has been brought into the Standard Library for use with the Standard Library parsers, and is also the API supported by lxml; BeautifulSoup supports an API peculiar to itself; and a pair of ancient, ugly, event-based interfaces to HTML still exist in the Python Standard Library.

    The lxml library supports two of the major industry-standard selectors: CSS selectors and XPath query language; BeautifulSoup has a selector system all its own, but one that is very powerful and has powered countless web-scraping programs over the years.

Given the foregoing range of options, I recommend using lxml when doing so is at all possible—installation requires compiling a C extension so that it can accelerate its parsing using libxml2—and using BeautifulSoup if you are on a machine where you can install only pure Python. Note that lxml is available as a pre-compiled package named python-lxml on Ubuntu machines, and that the best approach to installation is often this command line:

STATIC_DEPS=true pip install lxml

And if you consult the lxml documentation, you will find that it can optionally use the BeautifulSoup parser to build its own ElementTree-compliant trees of elements. This leaves very little reason to use BeautifulSoup by itself unless its selectors happen to be a perfect fit for your problem; we will discuss them later in this chapter.

But the state of the art may advance over the years, so be sure to consult its own documentation as well as recent blogs or Stack Overflow questions if you are having problems getting it to compile.

From the Future

The BeautifulSoup project has recovered! While the text below — written in late 2010 — has to carefully avoid the broken 3.2 release in favor of 3.0, BeautifulSoup has now released a rewrite named beautifulsoup4 on the Python Package Index that works with both Python 2 and 3. Once installed, simply import it like this:

from bs4 import BeautifulSoup

I just ran a test, and it reads the malformed phoenix.html page perfectly.

Diving into an HTML Document

The tree of objects that a parser creates from an HTML file is often called a Document Object Model, or DOM, even though this is officially the name of one particular API defined by the standards bodies and implemented by browsers for the use of JavaScript running on a web page.

The task we have set for ourselves, you will recall, is to find the current conditions, temperature, and humidity in the phoenix.html page that we have downloaded. Here is an excerpt: Listing 10–3, which focuses on the pane that we are interested in.

Listing 10–3. Excerpt from the Phoenix Forecast Page

<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN"><html><head>

<title>7-Day Forecast for Latitude 33.45&deg;N and Longitude 112.07&deg;W (Elev. 1132 ft)</title><link rel="STYLESHEET" type="text/css" href="fonts/main.css">

...

<table cellspacing="0" cellspacing="0" border="0" width="100%"><tr align="center"><td><table width='100%' border='0'>

<tr>

<td align ='center'>

<span class='blue1'>Phoenix, Phoenix Sky Harbor International Airport</span><br>

Last Update on 29 Oct 7:51 MST<br><br>

</td>
</tr>
<tr>

<td colspan='2'>

<table cellspacing='0' cellpadding='0' border='0' align='left'>

<tr>

<td class='big' width='120' align='center'>

<font size='3' color='000066'>

A Few Clouds<br>

<br>71&deg;F<br>(22&deg;C)</td>

</font><td rowspan='2' width='200'><table cellspacing='0' cellpadding='2' border='0' width='100%'>

<tr bgcolor='#b0c4de'>

<td><b>Humidity</b>:</td>

<td align='right'>30 %</td>

</tr>

<tr bgcolor='#ffefd5'>

<td><b>Wind Speed</b>:</td><td align='right'>SE 5 MPH<br>

</td>
</tr>

<tr bgcolor='#b0c4de'>

<td><b>Barometer</b>:</td><td align='right' nowrap>30.05 in (1015.90 mb)</td></tr>

<tr bgcolor='#ffefd5'>

<td><b>Dewpoint</b>:</td><td align='right'>38&deg;F (3&deg;C)</td>

</tr>
</tr>

<tr bgcolor='#ffefd5'>

<td><b>Visibility</b>:</td><td align='right'>10.00 Miles</td>

</tr>

<tr><td nowrap><b><a href='http://www.wrh.noaa.gov/total_forecast/other_obs.php?wfo=psr&zone=AZZ023' class='link'>More Local Wx:</a></b> </td>

<td nowrap align='right'><b><a href='http://www.wrh.noaa.gov/mesowest/getobext.php?wfo=psr&sid=KPHX&num=72' class='link'>3 Day History:</a></b> </td></tr>

</table>

...

There are two approaches to narrowing your attention to the specific area of the document in which you are interested. You can either search the HTML for a word or phrase close to the data that you want, or, as we mentioned previously, use Google Chrome or Firefox with Firebug to “Inspect Element” and see the element you want embedded in an attractive diagram of the document tree. Figure 10–2 shows Google Chrome with its Developer Tools pane open following an Inspect Element command: my mouse is poised over the <font> element that was brought up in its document tree, and the element itself is highlighted in blue on the web page itself.

Image

Figure 10–2. Examining Document Elements in the Browser

(click to enlarge)

Note that Google Chrome does have an annoying habit of filling in “conceptual” tags that are not actually present in the source code, like the <tbody> tags that you can see in every one of the tables shown here. For that reason, I look at the actual HTML source before writing my Python code; I mainly use Chrome to help me find the right places in the HTML.

We will want to grab the text “A Few Clouds” as well as the temperature before turning our attention to the table that sits to this element's right, which contains the humidity.

A properly indented version of the HTML page that you are scraping is good to have at your elbow while writing code. I have included phoenix-tidied.html with the source code bundle for this chapter so that you can take a look at how much easier it is to read!

You can see that the element displaying the current conditions in Phoenix sits very deep within the document hierarchy. Deep nesting is a very common feature of complicated page designs, and that is why simply walking a document object model can be a very verbose way to select part of a document—and, of course, a brittle one, because it will be sensitive to changes in any of the target element's parent. This will break your screen-scraping program not only if the target web site does a redesign, but also simply because changes in the time of day or the need for the site to host different kinds of ads can change the layout subtly and ruin your selector logic.

To see how direct document-object manipulation would work in this case, we can load the raw page directly into both the lxml and BeautifulSoup systems.

>>> import lxml.etree
>>> parser = lxml.etree.HTMLParser(encoding='utf-8')
>>> tree = lxml.etree.parse('phoenix.html', parser)

The need for a separate parser object here is because, as you might guess from its name, lxml is natively targeted at XML files.

>>> from BeautifulSoup import BeautifulSoup

>>> soup = BeautifulSoup(open('phoenix.html'))

Traceback (most recent call last):
  ...
HTMLParseError: malformed start tag, at line 96, column 720

What on earth? Well, look, the National Weather Service does not check or tidy its HTML! I might have chosen a different example for this book if I had known, but since this is a good illustration of the way the real world works, let's press on. Jumping to line 96, column 720 of phoenix.html, we see that there does indeed appear to be some broken HTML:

<a href="http://www.weather.gov"<u>www.weather.gov</u></a>

You can see that the <u> tag starts before a closing angle bracket has been encountered for the <a> tag. But why should BeautifulSoup care? I wonder what version I have installed.

>>> BeautifulSoup.__version__

'3.1.0'

Well, drat. I typed too quickly and was not careful to specify a working version when I ran pip to install BeautifulSoup into my virtual environment. Let's try again:

$ pip install BeautifulSoup==3.0.8.1

And now the broken document parses successfully:

>>> from BeautifulSoup import BeautifulSoup

>>> soup = BeautifulSoup(open('phoenix.html'))

That is much better!

Now, if we were to take the approach of starting at the top of the document and digging ever deeper until we find the node that we are interested in, we are going to have to generate some very verbose code. Here is the approach we would have to take with lxml:
>>> fonttag = tree.find('body').find('div').findall('table')[3] \

...     .findall('tr')[1].find('td').findall('table')[1].find('tr') \

...     .findall('td')[1].findall('table')[1].find('tr').find('td') \

...     .find('table').findall('tr')[1].find('td').find('table') \

...     .find('tr').find('td').find('font')

>>> fonttag.text

'\nA Few Clouds'

An attractive syntactic convention lets BeautifulSoup handle some of these steps more beautifully:

>>> fonttag = soup.body.div('table', recursive=False)[3] \

...     ('tr', recursive=False)[1].td('table', recursive=False)[1].tr \

...     ('td', recursive=False)[1]('table', recursive=False)[1].tr.td \

...     .table('tr', recursive=False)[1].td.table \

...     .tr.td.font

>>> fonttag.text

u'A Few Clouds71&deg;F(22&deg;C)'

BeautifulSoup lets you choose the first child element with a given tag by simply selecting the attribute .tagname, and lets you receive a list of child elements with a given tag name by calling an element like a function—you can also explicitly call the method findAll()—with the tag name and a recursive option telling it to pay attention just to the children of an element; by default, this option is set to True, and BeautifulSoup will run off and find all elements with that tag in the entire sub-tree beneath an element!

Anyway, two lessons should be evident from the foregoing exploration.

First, both lxml and BeautifulSoup provide attractive ways to quickly grab a child element based on its tag name and position in the document.

Second, we clearly should not be using such primitive navigation to try descending into a real-world web page! I have no idea how code like the expressions just shown can easily be debugged or maintained; they would probably have to be re-built from the ground up if anything went wrong with them—they are a painful example of write-once code.

And that is why selectors that each screen-scraping library supports are so critically important: they are how you can ignore the many layers of elements that might surround a particular target, and dive right in to the piece of information you need.

Figuring out how HTML elements are grouped, by the way, is much easier if you either view HTML with an editor that prints it as a tree, or if you run it through a tool like HTML tidy from W3C that can indent each tag to show you which ones are inside which other ones:
$ tidy phoenix.html > phoenix-tidied.html

You can also use either of these libraries to try tidying the code, with a call like one of these:

lxml.html.tostring(html)

soup.prettify()

See each library's documentation for more details on using these calls.

Selectors

A selector is a pattern that is crafted to match document elements on which your program wants to operate. There are several popular flavors of selector, and we will look at each of them as possible techniques for finding the current-conditions <font> tag in the National Weather Service page for Phoenix. We will look at three:

•    People who are deeply XML-centric prefer XPath expressions, which are a companion technology to XML itself and let you match elements based on their ancestors, their own identity, and textual matches against their attributes and text content. They are very powerful as well as quite general.

•    If you are a web developer, then you probably link to CSS selectors as the most natural choice for examining HTML. These are the same patterns used in Cascading Style Sheets documents to describe the set of elements to which each set of styles should be applied.

•    Both lxml and BeautifulSoup, as we have seen, provide a smattering of their own methods for finding document elements.

Here are standards and descriptions for each of the selector styles just described— first, XPath:

    http://www.w3.org/TR/xpath/

    http://codespeak.net/lxml/tutorial.html#using-xpath-to-find-text

    http://codespeak.net/lxml/xpathxslt.html

And here are some CSS selector resources:

    http://www.w3.org/TR/CSS2/selector.html

    http://codespeak.net/lxml/cssselect.html

And, finally, here are links to documentation that looks at selector methods peculiar to lxml and BeautifulSoup:

    http://codespeak.net/lxml/tutorial.html#elementpath

  http://www.crummy.com/software/BeautifulSoup/documentation.html#Searching the Parse Tree

The National Weather Service has not been kind to us in constructing this web page. The area that contains the current conditions seems to be constructed entirely of generic untagged elements; none of them have id or class values like currentConditions or temperature that might help guide us to them.

Well, what are the features of the elements that contain the current weather conditions in Listing 10–3? The first thing I notice is that the enclosing <td> element has the class "big". Looking at the page visually, I see that nothing else seems to be of exactly that font size; could it be so simple as to search the document for every <td> with this CSS class? Let us try, using a CSS selector to begin with:

>>> from lxml.cssselect import CSSSelector

>>> sel = CSSSelector('td.big')

>>> sel(tree)

[<Element td at b72ec0a4>]

Perfect! It is also easy to grab elements with a particular class attribute using the peculiar syntax of BeautifulSoup:

>>> soup.find('td', 'big')

<td class="big" width="120" align="center">

<font size="3" color="000066">

A Few Clouds<br />

<br />71&deg;F<br />(22&deg;C)</font></td>

Writing an XPath selector that can find CSS classes is a bit difficult since the class="" attribute contains space-separated values and we do not know, in general, whether the class will be listed first, last, or in the middle.

>>> tree.xpath(".//td[contains(concat(' ', normalize-space(@class), ' '), ' big ')]")

[<Element td at a567fcc>]

This is a common trick when using XPath against HTML: by prepending and appending spaces to the class attribute, the selector assures that it can look for the target class name with spaces around it and find a match regardless of where in the list of classes the name falls.

Selectors, then, can make it simple, elegant, and also quite fast to find elements deep within a document that interest us. And if they break because the document is redesigned or because of a corner case we did not anticipate, they tend to break in obvious ways, unlike the tedious and deep procedure of walking the document tree that we attempted first.

Once you have zeroed in on the part of the document that interests you, it is generally a very simple matter to use the ElementTree or the old BeautifulSoup API to get the text or attribute values you need. Compare the following code to the actual tree shown in Listing 10–3:

>>> td = sel(tree)[0]

>>> td.find('font').text

'\nA Few Clouds'

>>> td.find('font').findall('br')[1].tail

u'71°F'

If you are annoyed that the first string did not return as a Unicode object, you will have to blame the ElementTree standard; the glitch has been corrected in Python 3! Note that ElementTree thinks of text strings in an HTML file not as entities of their own, but as either the .text of its parent element or the .tail of the previous element. This can take a bit of getting used to, and works like this:

<p>

  My favorite play is    # the <p> element's .text

  <i>

    Hamlet                 # the <i> element's .text

  </i>

  which is not really      # the <i> element's .tail

  <b>

    Danish                 # the <b> element's .text

  </b>

  but English.             # the <b> element's .tail

</p>


This can be confusing because you would think of the three words favorite and really and English as being at the same “level” of the document—as all being children of the <p> element somehow—but lxml considers only the first word to be part of the text attached to the <p> element, and considers the other two to belong to the tail texts of the inner <i> and <b> elements. This arrangement can require a bit of contortion if you ever want to move elements without disturbing the text around them, but leads to rather clean code otherwise, if the programmer can keep a clear picture of it in her mind.

BeautifulSoup, by contrast, considers the snippets of text and the <br> elements inside the <font> tag to all be children sitting at the same level of its hierarchy. Strings of text, in other words, are treated as phantom elements. This means that we can simply grab our text snippets by choosing the right child nodes:

>>> td = soup.find('td', 'big')

>>> td.font.contents[0]

u'\nA Few Clouds'

>>> td.font.contents[4]

u'71&deg;F'

Through a similar operation, we can direct either lxml or BeautifulSoup to the humidity datum. Since the word Humidity: will always occur literally in the document next to the numeric value, this search can be driven by a meaningful term rather than by something as random as the big CSS tag. See Listing 10–4 for a complete screen-scraping routine that does the same operation first with lxml and then with BeautifulSoup.

This complete program, which hits the National Weather Service web page for each request, takes the city name on the command line:

$ python weather.py Springfield, IL

Condition:

Traceback (most recent call last):

  ..

AttributeError: 'NoneType' object has no attribute 'text'

And here you can see, superbly illustrated, why screen scraping is always an approach of last resort and should always be avoided if you can possibly get your hands on the data some other way: because presentation markup is typically designed for one thing—human readability in browsers—and can vary in crazy ways depending on what it is displaying.

What is the problem here? A short investigation suggests that the NWS page includes only a <font> element inside of the <tr> if—and this is just a guess of mine, based on a few examples—the description of the current conditions is several words long and thus happens to contain a space. The conditions in Phoenix as I have written this chapter are “A Few Clouds,” so the foregoing code has worked just fine; but in Springfield, the weather is “Fair” and therefore does not need a <font> wrapper around it, apparently.

Listing 10–4. Completed Weather Scraper

#!/usr/bin/env python

# Foundations of Python Network Programming - Chapter 10 - weather.py

# Fetch the weather forecast from the National Weather Service.

import sys, urllib, urllib2

import lxml.etree

from lxml.cssselect import CSSSelector

from BeautifulSoup import BeautifulSoup

if len(sys.argv) < 2:

    print >>sys.stderr, 'usage: weather.py CITY, STATE'

    exit(2)

data = urllib.urlencode({'inputstring': ' '.join(sys.argv[1:])})

info = urllib2.urlopen('http://forecast.weather.gov/zipcity.php', data)

content = info.read()

# Solution #1

parser = lxml.etree.HTMLParser(encoding='utf-8')

tree = lxml.etree.fromstring(content, parser)

big = CSSSelector('td.big')(tree)[0]

if big.find('font') is not None:

    big = big.find('font')

print 'Condition:', big.text.strip()

print 'Temperature:', big.findall('br')[1].tail

tr = tree.xpath('.//td[b="Humidity"]')[0].getparent()

print 'Humidity:', tr.findall('td')[1].text

print

# Solution #2

soup = BeautifulSoup(content)  # doctest: +SKIP

big = soup.find('td', 'big')

if big.font is not None:

    big = big.font

print 'Condition:', big.contents[0].string.strip()

temp = big.contents[3].string or big.contents[4].string  # can be either

print 'Temperature:', temp.replace('°', ' ')

tr = soup.find('b', text='Humidity').parent.parent.parent

print 'Humidity:', tr('td')[1].string

print

If you look at the final form of Listing 10–4, you will see a few other tweaks that I made as I noticed changes in format with different cities. It now seems to work against a reasonable selection of locations; again, note that it gives the same report twice, generated once with lxml and once with BeautifulSoup:

$ python weather.py Springfield, IL

Condition: Fair

Temperature: 54 °F

Humidity: 28 %</code>

<code>Condition: Fair

Temperature: 54  F

Humidity: 28 %

$ python weather.py Grand Canyon, AZ

Condition: Fair

Temperature: 67°F

Humidity: 28 %

Condition: Fair

Temperature: 67 F

Humidity: 28 %

You will note that some cities have spaces between the temperature and the F, and others do not. No, I have no idea why. But if you were to parse these values to compare them, you would have to learn every possible variant and your parser would have to take them into account.

I leave it as an exercise to the reader to determine why the web page currently displays the word “NULL”—you can even see it in the browser—for the temperature in Elk City, Oklahoma. Maybe that location is too forlorn to even deserve a reading? In any case, it is yet another special case that you would have to treat sanely if you were actually trying to repackage this HTML page for access from an API:

$ python weather.py Elk City, OK

Condition: Fair and Breezy

Temperature: NULL

Humidity: NA

Condition: Fair and Breezy

Temperature: NULL

Humidity: NA

I also leave as an exercise to the reader the task of parsing the error page that comes up if a city cannot be found, or if the Weather Service finds it ambiguous and prints a list of more specific choices!

Summary

Although the Python Standard Library has several modules related to SGML and, more specifically, to HTML parsing, there are two premier screen-scraping technologies in use today: the fast and powerful lxml library that supports the standard Python “ElementTree” API for accessing trees of elements, and the quirky BeautifulSoup library that has powerful API conventions all its own for querying and traversing a document.

If you use BeautifulSoup before 3.2 comes out, be sure to download the most recent 3.0 version; the 3.1 series, which unfortunately will install by default, is broken and chokes easily on HTML glitches.

Screen scraping is, at bottom, a complete mess. Web pages vary in unpredictable ways even if you are browsing just one kind of object on the site—like cities at the National Weather Service, for example.

To prepare to screen scrape, download a copy of the page, and use HTML tidy, or else your screen-scraping library of choice, to create a copy of the file that your eyes can more easily read. Always run your program against the ugly original copy, however, lest HTML tidy fixes something in the markup that your program will need to repair!

Once you find the data you want in the web page, look around at the nearby elements for tags, classes, and text that are unique to that spot on the screen. Then, construct a Python command using your scraping library that looks for the pattern you have discovered and retrieves the element in question. By looking at its children, parents, or enclosed text, you should be able to pull out the data that you need from the web page intact.

When you have a basic script working, continue testing it; you will probably find many edge cases that have to be handled correctly before it becomes generally useful. Remember: when possible, always use true APIs, and treat screen scraping as a technique of last resort!

Source: http://rhodesmill.org/brandon/chapters/screen-scraping/

Sunday, 24 May 2015

5 tips for scraping big websites

Scraping bigger websites can be a challenge if done the wrong way.

Bigger websites would have more data, more security and more pages. We’ve learned a lot from our years of crawling such large complex websites, and these tips could help solve some of your challenges

1. Cache pages visited for scraping

When scraping big websites, its always a good idea to cache the data you have already downloaded. So you don’t have to put load on the website again, in case you have start over again or that page is required again during scraping. Its effortless to cache to a key value store like redis.But Databases and filesystem caches are also good.

2. Don’t flood the website with large number of parallel requests , take it slow

Big websites posses algorithms to detect webscraping, large number of parallel requests from the same ip address will identify you as a Denial Of Service Attack on their website, and blacklist your IPs immediately. A better idea is to time your requests properly one after the other, giving it some human behavior. Oh!.. but scraping like that will take you ages. So balance requests using the average response time of the websites, and play around with the number of parallel requests to the website to get the right number.

3. Store the URLs that you have already fetched

You may want to keep a list of URLs you have already fetched, in a database or a key value store. What would you do if you scraper crashes after scraping 70% of the website. If you need to complete the remaining 30%, with out this list of URLs, you’ll waste a lot of time and bandwidth. Make sure you store this list of URLs

somewhere permanent, till you have all the required data. This could also be combined with the cache. This way, you’ll be able to resume scraping.

4. Split scraping into different phases

Its easier and safer if you split the scraping into multiple smaller phases. For example, you could split scraping a huge site into two. One for gathering links to the pages from which you need to extract data and another for downloading these pages to scrape content.

5. Take only whats required

Don’t grab or follow every link unless its required. You can define a proper navigation scheme to make the scraper visit only the pages required. Its always tempting to grab everything, but its just a waste of bandwidth, time and storage.

Source: http://learn.scrapehero.com/5-tips-for-scraping-big-websites/

Friday, 22 May 2015

How to Generate Sales Leads Using Web Scraping Services

The first stage of any selling process is what is popularly known as “lead generation”. This phase is what most businesses place at the apex of their sales concerns. It is a driving force that governs decision-making at its highest levels, and influences business strategy and planning. If you are about to embark on an outbound sales campaign and are in the process of looking for leads, you would acknowledge the fact that lead generation process is of extreme importance for any business.

Different lead generation techniques have been used over and over again by companies around the world to satiate this growing business need. Newer, more innovative methods have also emerged to help marketers in this process. One such method of lead generation that is fast catching on, and is poised to play a big role for businesses in the coming years, is web scraping. With web scraping, you can easily get access to multiple relevant and highly customized leads – a perfect starting point for any marketing, promotional or sales campaign.

The prominence of Web Scraping in overall marketing strategy

At present, levels of competition have risen sky high for most businesses. For success, lead generation and gaining insight about customer behavior and preferences is an essential business requirement. Web scraping is the process of scraping or mining the internet for information. Different tools and techniques can be used to harvest information from multiple internet sources based on relevance, and the structured and organized in a way that makes sense to your business. Companies that provide web scraping services essentially use web scrapers to generate a targeted lead database that your company can then integrate into its marketing and sales strategies and plans.

The actual process of web scraping involves creating scraping scripts or algorithms which crawl the web for information based on certain preset parameters and options. The scraping process can be customized and tuned towards finding the kind of data that your business needs. The script can extract data from websites automatically, collate and put together a meaningful collection of leads for business development.

Lead Generation Basics

At a very high level, any person who has the resources and the intent to purchase your product or service qualifies as a lead. In the present scenario, you need to go far deeper than that. Marketers need to observe behavior patterns and purchasing trends to ensure that a particular person qualifies as a lead. If you have a group of people you are targeting, you need to decide who the viable leads will be, acquire their contact information and store it in a database for further action.

List buying used to be a popular way to get leads, but their efficacy has dwindled over time. Web scraping is the fast coming up as a feasible lead generation technique, allowing you to find highly focused and targeted leads in short amounts of time. All you need is a service provider that would carry out the data mining necessary for lead generation, and you end up with a list of actionable leads that you can try selling to.

How Web Scraping makes a substantial difference

With web scraping, you can extract valuable predictive information from websites. Web scraping facilitates high quality data collection and allows you to structure marketing and sales campaigns better. To drive sales and maximize revenue, you need strong, viable leads. To facilitate this, you need critical data which encompasses customer behavior, contact details, buying patterns and trends, willingness and ability to spend resources, and a myriad of other aspects critical to ascertain the potential of an entity as a rewarding lead. Data mining through web scraping can be a great way to get to these factors and identifying the leads that would make a difference for your business.

Crawling through many different web locales using different techniques, web scraping services pick up a wealth of information. This highly relevant and specialized information instantly provides your business with actionable leads. Furthermore, this exercise allows you to fine-tune your data management processes, make more accurate and reliable predictions and projections, arrive at more effective, strategic and marketing decisions and customize your workflow and business development to better suit the current market.

The Process and the Tools

Lead generation, being one of the most important processes for any business, can prove to be an expensive proposition if not handled strategically. Companies spend large amounts of their resources acquiring viable leads they can sell to. With web scraping, you can dramatically cut down the costs involved in lead generation and take your business forward with speed and efficiency. Here are some of the time-tested web scraping tools which can come in handy for lead generation –

•    Website download software – Used to copy entire websites to local storage. All website pages are downloaded and the hierarchy of navigation and internal links preserve. The stored pages can then be viewed and scoured for information at any later time.     Web scraper – Tools that crawl through bulk information on the internet, extracting specific, relevant data using a set of pre-defined parameters.

•    Data grabber – Sifts through websites and databases fast and extracts all the information, which can be sorted and classified later.

•    Text extractor – Can be used to scrape multiple websites or locations for acquiring text content from websites and web documents. It can mine data from a variety of text file formats and platforms.

With these tools, web scraping services scrape websites for lead generation and provide your business with a set of strong, actionable leads that can make a difference.

Covering all Bases

The strength of web scraping and web crawling lies in the fact that it covers all the necessary bases when it comes to lead generation. Data is harvested, structured, categorized and organized in such a way that businesses can easily use the data provided for their sales leads. As discussed earlier, cold and detached lists no longer provide you with enough actionable leads. You need to look at various factors and consider them during your lead generation efforts –

•    Contact details of the prospect

•    Purchasing power and purchasing history of the prospect

•    Past purchasing trends, willingness to purchase and history of buying preferences of the prospect

•    Social markers that are indicative of behavioral patterns

•    Commercial and business markers that are indicative of behavioral patterns

•    Transactional details

•    Other factors including age, gender, demography, social circles, language and interests

All these factors need to be taken into account and considered in detail if you have to ensure whether a lead is viable and actionable, or not. With web scraping you can get enough data about every single prospect, connect all the data collected with the help of onboarding, and ascertain with conviction whether a particular prospect will be viable for your business.

Let us take a look at how web scraping addresses these different factors –

1. Scraping website’s

During the scraping process, all websites where a particular prospect has some participation are crawled for data. Seemingly disjointed data can be made into a sensible unit by the use of onboarding- linking user activities with their online entities with the help of user IDs. Documents can be scanned for participation. E-commerce portals can be scanned to find comments and ratings a prospect might have delivered to certain products. Service providers’ websites can be scraped to find if the prospect has given a testimonial to any particular service. All these details can then be accumulated into a meaningful data collection that is indicative of the purchasing power and intent of the prospect, along with important data about buying preferences and tastes.

2. Social scraping

According to a study, most internet users spend upwards of two hours every day on social networks. Therefore, scraping social networks is a great way to explore prospects in detail. Initially, you can get important identification markers like names, addresses, contact numbers and email addresses. Further, social networks can also supply information about age, gender, demography and language choices. From this basic starting point, further details can be added by scraping social activity over long periods of time and looking for activities which indicate purchasing preferences, trends and interests. This exercise provides highly relevant and targeted information about prospects can be constructively used while designing sales campaigns.

3. Transaction scraping

Through the scraping of transactions, you get a clear idea about the purchasing power of prospects. If you are looking for certain income groups or leads that invest in certain market sectors or during certain specific periods of time, transaction scraping is the best way to harvest meaningful information. This also helps you with competition analysis and provides you with pointers to fine-tune your marketing and sales strategies.

Using these varied lead generation techniques and finding the right balance and combination is key to securing the right leads for your business. Overall, signing up for web scraping services can be a make or break factor for your business going forward. With a steady supply of valuable leads, you can supercharge your sales, maximize returns and craft the perfect marketing maneuvers to take your business to an altogether new dimension.

Source: https://www.promptcloud.com/blog/how-to-generate-sales-leads-using-web-scraping-services/

Monday, 18 May 2015

Metadata Scraping Service

As mentioned in Robert's last blog post we set up a scraping service which supports users working with citations by extracting automatically references from digital library or publisher websites. We use a very similar service in BibSonomy to support our users while posting a new reference. However, the service is independent from BibSonomy. Our main goal is to make the metadata of other websites easily accessible to every user who needs bibliographic metadata. Therefore we offer the extracted information in BibTeX format. Most tools allow to import BibTeX so it should be very easy for everyone to get the data into his own tool. The service is running under the following URL:

http://scraper.bibsonomy.org/

Currently we support more than 60 different websites (here the full list) and we are working on further extensions. In the near future we will make the source code of our scrapers publicly available under GPL and we hope that other people will find it useful and start to help us by implementing their own scrapers.

How does the service work?

In principle there are two ways to use the service. One uses a so

called bookmarklet and the other is simply based on the URL. If you

have a webpage of a supported site e.g. from ACM digital library the

following page:

Logsonomy - social information retrieval with logdata

then you can copy this URL into the form on the service homepage and the service will return you the extracted BibTeX information. As this is not a very convenient way to access the data we provide a ScrapePublication button. This button is a small piece of JavaScript and can be copied to the toolbar of the browser. By pressing this button while visiting a digital library webpage the URL will be automatically copied and sent to the scraping service and the metadata is extracted.

The service has three options which can be used to customize it and to make it useful for other systems. Obviously one parameter is the URL itself which is used by the bookmarklet, too. The next is the selection parameter which allows to send text to the service and the last parameter allows to change the output format from html to plain BibTeX. This last parameter makes integration with other systems very simple.

If needed we can provide the metadata in other formats as well but currently we support only BibTeX.

Source: http://blog.bibsonomy.org/2008/11/metadata-scraping-service.html

Thursday, 14 May 2015

4 Web Scraping Tools To Save You Time On Data Extraction

Either you are working on a product website, struggling to add live data feed to your app or merely need to pull out a huge amount of online data for analysis, an accurate web scraping tool can save you loads of time and keep you sane. Here are four powerful web scraping tools to save you from copy-pasting or spending time on writing your own scripts.

1. Uipath

Either you are working on a product website, struggling to add live data feed to your app or merely need to pull out a huge amount of online data for analysis, an accurate web scraping tool can save you loads of time and keep you sane. Here are four powerful web scraping tools to save you from copy-pasting or spending time on writing your own scripts.

1. Uipath

Uipath specializes in developing various process automation software including web scraping and screen scraping software for desktop and web. Uipath web scraper is perfect for non-coders and easily surpasses most common data extraction challenges including page navigation, digging through flash and even scraping PDF files. All you need to do is open the web scraping wizard and simply highlight the data you need to extract. The tool will scrape all the data following this pattern at all pages you’ve chosen and sort it accordingly. You can add as many items for scraping as you like and have them sorted in respective columns. As a result, you receive a neat Excel or CSV document with all the data eliminated from duplicates.

Moreover, Uipath isn’t just about scraping. This software can be used not only for extracting data, but to manipulate the interface of another app, thus establishing data transfers among the two of them. Basically, this tool could be used to conduct any repetitive task a human could do, yet much faster and with higher accuracy.

Pros: You can automate form filling, clicking buttons, navigation etc. Uipath scraper is impressively accurate, fast and simple to use. It “reads” all types of data on screen (JS, HTML, Silverlight and more), plus you can train the software to emulate human actions of various complexity.

Cons: Premium software runs at a premium price. Uipath is an affordable professional solution, but may be a bit too pricey for personal use.

2. Import.io

Data Extraction

Either you are working on a product website, struggling to add live data feed to your app or merely need to pull out a huge amount of online data for analysis, an accurate web scraping tool can save you loads of time and keep you sane. Here are four powerful web scraping tools to save you from copy-pasting or spending time on writing your own scripts.

1. Uipath

Uipath specializes in developing various process automation software including web scraping and screen scraping software for desktop and web. Uipath web scraper is perfect for non-coders and easily surpasses most common data extraction challenges including page navigation, digging through flash and even scraping PDF files. All you need to do is open the web scraping wizard and simply highlight the data you need to extract. The tool will scrape all the data following this pattern at all pages you’ve chosen and sort it accordingly. You can add as many items for scraping as you like and have them sorted in respective columns. As a result, you receive a neat Excel or CSV document with all the data eliminated from duplicates.

Moreover, Uipath isn’t just about scraping. This software can be used not only for extracting data, but to manipulate the interface of another app, thus establishing data transfers among the two of them. Basically, this tool could be used to conduct any repetitive task a human could do, yet much faster and with higher accuracy.

Pros: You can automate form filling, clicking buttons, navigation etc. Uipath scraper is impressively accurate, fast and simple to use. It “reads” all types of data on screen (JS, HTML, Silverlight and more), plus you can train the software to emulate human actions of various complexity.

Cons: Premium software runs at a premium price. Uipath is an affordable professional solution, but may be a bit too pricey for personal use.

2. Import.io

Import.io offers you a free desktop app to help you scrap all the data you need from an unlimited amount of web pages. The service treats each page as a potential data source to generate API from. If the page you’ve submitted has been previously processed, you can access its API and get some of the data. In other case, Import.io will guide you through the process of creating the scraping matrix by building connectors (for navigation) or extractors (to pull out the needed data). Afterwards, you submit a request for extraction and it’s typically processed within 24 hours. All the data is private and you can schedule auto refreshments at any chosen period of time.

Pros: The service is easy-to-use with no tech skills needed. It can  pages with data (those that needed login/pass), plus it’s free. Minimalistic effective design and simple navigation comes along.

Cons: Improt.io has hard times navigating through combinations of javascript/POST and cannot navigate from one page to another (e.g. click next, second page etc).  Sometimes, it takes over 24 hours to receive the report.  Besides, it’s a browser-only app, non-compatible with other applications.

3. Kimono

Either you are working on a product website, struggling to add live data feed to your app or merely need to pull out a huge amount of online data for analysis, an accurate web scraping tool can save you loads of time and keep you sane. Here are four powerful web scraping tools to save you from copy-pasting or spending time on writing your own scripts.

1. Uipath

Uipath specializes in developing various process automation software including web scraping and screen scraping software for desktop and web. Uipath web scraper is perfect for non-coders and easily surpasses most common data extraction challenges including page navigation, digging through flash and even scraping PDF files. All you need to do is open the web scraping wizard and simply highlight the data you need to extract. The tool will scrape all the data following this pattern at all pages you’ve chosen and sort it accordingly. You can add as many items for scraping as you like and have them sorted in respective columns. As a result, you receive a neat Excel or CSV document with all the data eliminated from duplicates.

Moreover, Uipath isn’t just about scraping. This software can be used not only for extracting data, but to manipulate the interface of another app, thus establishing data transfers among the two of them. Basically, this tool could be used to conduct any repetitive task a human could do, yet much faster and with higher accuracy.

Pros: You can automate form filling, clicking buttons, navigation etc. Uipath scraper is impressively accurate, fast and simple to use. It “reads” all types of data on screen (JS, HTML, Silverlight and more), plus you can train the software to emulate human actions of various complexity.

Cons: Premium software runs at a premium price. Uipath is an affordable professional solution, but may be a bit too pricey for personal use.

2. Import.io

Import.io offers you a free desktop app to help you scrap all the data you need from an unlimited amount of web pages. The service treats each page as a potential data source to generate API from. If the page you’ve submitted has been previously processed, you can access its API and get some of the data. In other case, Import.io will guide you through the process of creating the scraping matrix by building connectors (for navigation) or extractors (to pull out the needed data). Afterwards, you submit a request for extraction and it’s typically processed within 24 hours. All the data is private and you can schedule auto refreshments at any chosen period of time.

Pros: The service is easy-to-use with no tech skills needed. It can  pages with data (those that needed login/pass), plus it’s free. Minimalistic effective design and simple navigation comes along.

Cons: Improt.io has hard times navigating through combinations of javascript/POST and cannot navigate from one page to another (e.g. click next, second page etc).  Sometimes, it takes over 24 hours to receive the report.  Besides, it’s a browser-only app, non-compatible with other applications.

3. Kimono

Kimono is a popular web scraper among app developers who prefer to power up their products with live data and no additional code. It saves you tons of time when you need to fill up your app with mashing data. Install Kimono Browser bookmarklet; highlight page elements you need to and provide some positive/negative examples to train the tool. After labeling all the data you can download it in CSV/JSON/a web endpoint format. The APIs created for your pages are stored in the cloud and you can run them on schedule. So far, Kimono is free to use with pro and enterprise solutions to be launched soon.

Pros: The tool works pretty fast and works great with scraping newsfeeds and prices. The data is rather accurate.

Cons: No page navigation available and you need to spend quite a lot of time to train Kimono before it starts to pull out the multi items data accurate enough. In general, I’d say Kimono is more of an app mash-ups creator than a full-scale web scraper.

4. Screen Scraper

Either you are working on a product website, struggling to add live data feed to your app or merely need to pull out a huge amount of online data for analysis, an accurate web scraping tool can save you loads of time and keep you sane. Here are four powerful web scraping tools to save you from copy-pasting or spending time on writing your own scripts.

1. Uipath

Uipath specializes in developing various process automation software including web scraping and screen scraping software for desktop and web. Uipath web scraper is perfect for non-coders and easily surpasses most common data extraction challenges including page navigation, digging through flash and even scraping PDF files. All you need to do is open the web scraping wizard and simply highlight the data you need to extract. The tool will scrape all the data following this pattern at all pages you’ve chosen and sort it accordingly. You can add as many items for scraping as you like and have them sorted in respective columns. As a result, you receive a neat Excel or CSV document with all the data eliminated from duplicates.

Moreover, Uipath isn’t just about scraping. This software can be used not only for extracting data, but to manipulate the interface of another app, thus establishing data transfers among the two of them. Basically, this tool could be used to conduct any repetitive task a human could do, yet much faster and with higher accuracy.

Pros: You can automate form filling, clicking buttons, navigation etc. Uipath scraper is impressively accurate, fast and simple to use. It “reads” all types of data on screen (JS, HTML, Silverlight and more), plus you can train the software to emulate human actions of various complexity.

Cons: Premium software runs at a premium price. Uipath is an affordable professional solution, but may be a bit too pricey for personal use.

2. Import.io

Import.io offers you a free desktop app to help you scrap all the data you need from an unlimited amount of web pages. The service treats each page as a potential data source to generate API from. If the page you’ve submitted has been previously processed, you can access its API and get some of the data. In other case, Import.io will guide you through the process of creating the scraping matrix by building connectors (for navigation) or extractors (to pull out the needed data). Afterwards, you submit a request for extraction and it’s typically processed within 24 hours. All the data is private and you can schedule auto refreshments at any chosen period of time.

Pros: The service is easy-to-use with no tech skills needed. It can  pages with data (those that needed login/pass), plus it’s free. Minimalistic effective design and simple navigation comes along.

Cons: Improt.io has hard times navigating through combinations of javascript/POST and cannot navigate from one page to another (e.g. click next, second page etc).  Sometimes, it takes over 24 hours to receive the report.  Besides, it’s a browser-only app, non-compatible with other applications.

3. Kimono

Kimono is a popular web scraper among app developers who prefer to power up their products with live data and no additional code. It saves you tons of time when you need to fill up your app with mashing data. Install Kimono Browser bookmarklet; highlight page elements you need to and provide some positive/negative examples to train the tool. After labeling all the data you can download it in CSV/JSON/a web endpoint format. The APIs created for your pages are stored in the cloud and you can run them on schedule. So far, Kimono is free to use with pro and enterprise solutions to be launched soon.

Pros: The tool works pretty fast and works great with scraping newsfeeds and prices. The data is rather accurate.

Cons: No page navigation available and you need to spend quite a lot of time to train Kimono before it starts to pull out the multi items data accurate enough. In general, I’d say Kimono is more of an app mash-ups creator than a full-scale web scraper.

4. Screen Scraper

Screen scraper is pretty neat and tackles a lot of difficult tasks including navigation and precise data extractions, however it requires a bit of programming/tokenization skills if you’d like to run it super smooth. Launch the software, add a proxy, start recording the list of your actions and creating extracting patterns (some coding required). Works great with HTML and Javascript, however you should test it with Citrix and other platforms. Basically, screen scraper helps you writing simple web scraping scripts and lets you download the extracted data in txt/csv/excel format.

Pros: When set correctly, there’s no data extraction tasks Screen scraper fails to handle.

Cons: The tool is pricey and you’ll have to go through documentation and have basic coding skills to use it.

Source: http://tech.co/4-web-scraping-tools-save-time-data-extraction-2015-03